TTKMusicPlayer  3.7.0.0
TTKMusicPlayer imitates Kugou UI, the music player uses of qmmp core library based on Qt for windows and linux
adler32.c
Go to the documentation of this file.
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 #define BASE 65521U /* largest prime smaller than 65536 */
11 #define NMAX 5552
12 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13 
14 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
15 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
16 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
17 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
18 #define DO16(buf) DO8(buf,0); DO8(buf,8);
19 
20 /* use NO_DIVIDE if your processor does not do division in hardware --
21  try it both ways to see which is faster */
22 #ifdef NO_DIVIDE
23 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24  (thank you to John Reiser for pointing this out) */
25 # define CHOP(a) \
26  do { \
27  unsigned long tmp = a >> 16; \
28  a &= 0xffffUL; \
29  a += (tmp << 4) - tmp; \
30  } while (0)
31 # define MOD28(a) \
32  do { \
33  CHOP(a); \
34  if (a >= BASE) a -= BASE; \
35  } while (0)
36 # define MOD(a) \
37  do { \
38  CHOP(a); \
39  MOD28(a); \
40  } while (0)
41 # define MOD63(a) \
42  do { /* this assumes a is not negative */ \
43  z_off64_t tmp = a >> 32; \
44  a &= 0xffffffffL; \
45  a += (tmp << 8) - (tmp << 5) + tmp; \
46  tmp = a >> 16; \
47  a &= 0xffffL; \
48  a += (tmp << 4) - tmp; \
49  tmp = a >> 16; \
50  a &= 0xffffL; \
51  a += (tmp << 4) - tmp; \
52  if (a >= BASE) a -= BASE; \
53  } while (0)
54 #else
55 # define MOD(a) a %= BASE
56 # define MOD28(a) a %= BASE
57 # define MOD63(a) a %= BASE
58 #endif
59 
60 /* ========================================================================= */
61 uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
62  unsigned long sum2;
63  unsigned n;
64 
65  /* split Adler-32 into component sums */
66  sum2 = (adler >> 16) & 0xffff;
67  adler &= 0xffff;
68 
69  /* in case user likes doing a byte at a time, keep it fast */
70  if (len == 1) {
71  adler += buf[0];
72  if (adler >= BASE)
73  adler -= BASE;
74  sum2 += adler;
75  if (sum2 >= BASE)
76  sum2 -= BASE;
77  return adler | (sum2 << 16);
78  }
79 
80  /* initial Adler-32 value (deferred check for len == 1 speed) */
81  if (buf == Z_NULL)
82  return 1L;
83 
84  /* in case short lengths are provided, keep it somewhat fast */
85  if (len < 16) {
86  while (len--) {
87  adler += *buf++;
88  sum2 += adler;
89  }
90  if (adler >= BASE)
91  adler -= BASE;
92  MOD28(sum2); /* only added so many BASE's */
93  return adler | (sum2 << 16);
94  }
95 
96  /* do length NMAX blocks -- requires just one modulo operation */
97  while (len >= NMAX) {
98  len -= NMAX;
99  n = NMAX / 16; /* NMAX is divisible by 16 */
100  do {
101  DO16(buf); /* 16 sums unrolled */
102  buf += 16;
103  } while (--n);
104  MOD(adler);
105  MOD(sum2);
106  }
107 
108  /* do remaining bytes (less than NMAX, still just one modulo) */
109  if (len) { /* avoid modulos if none remaining */
110  while (len >= 16) {
111  len -= 16;
112  DO16(buf);
113  buf += 16;
114  }
115  while (len--) {
116  adler += *buf++;
117  sum2 += adler;
118  }
119  MOD(adler);
120  MOD(sum2);
121  }
122 
123  /* return recombined sums */
124  return adler | (sum2 << 16);
125 }
126 
127 /* ========================================================================= */
128 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
129  return adler32_z(adler, buf, len);
130 }
131 
132 /* ========================================================================= */
134  unsigned long sum1;
135  unsigned long sum2;
136  unsigned rem;
137 
138  /* for negative len, return invalid adler32 as a clue for debugging */
139  if (len2 < 0)
140  return 0xffffffffUL;
141 
142  /* the derivation of this formula is left as an exercise for the reader */
143  MOD63(len2); /* assumes len2 >= 0 */
144  rem = (unsigned)len2;
145  sum1 = adler1 & 0xffff;
146  sum2 = rem * sum1;
147  MOD(sum2);
148  sum1 += (adler2 & 0xffff) + BASE - 1;
149  sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
150  if (sum1 >= BASE) sum1 -= BASE;
151  if (sum1 >= BASE) sum1 -= BASE;
152  if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
153  if (sum2 >= BASE) sum2 -= BASE;
154  return sum1 | (sum2 << 16);
155 }
156 
157 /* ========================================================================= */
159  return adler32_combine_(adler1, adler2, len2);
160 }
161 
163  return adler32_combine_(adler1, adler2, len2);
164 }
unsigned long z_size_t
Definition: zconf.h:257
#define MOD(a)
Definition: adler32.c:55
#define DO16(buf)
Definition: adler32.c:18
#define BASE
Definition: adler32.c:10
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len)
Definition: adler32.c:61
#define MOD63(a)
Definition: adler32.c:57
#define z_off_t
Definition: zconf.h:513
#define z_off64_t
Definition: zconf.h:522
#define NMAX
Definition: adler32.c:11
Byte FAR Bytef
Definition: zconf.h:402
voidpf void * buf
Definition: ioapi.h:136
#define MOD28(a)
Definition: adler32.c:56
unsigned long uLong
Definition: zconf.h:396
typedef long(ZCALLBACK *tell_file_func) OF((voidpf opaque
#define local
Definition: unzip.c:91
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2)
Definition: adler32.c:162
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
Definition: adler32.c:128
#define Z_NULL
Definition: zlib.h:212
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2)
Definition: adler32.c:133
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2)
Definition: adler32.c:158
#define ZEXPORT
Definition: zconf.h:382
unsigned int uInt
Definition: zconf.h:395