TTKMusicPlayer  3.7.0.0
TTKMusicPlayer imitates Kugou UI, the music player uses of qmmp core library based on Qt for windows and linux
crc32.c
Go to the documentation of this file.
1 /* crc32.c -- compute the CRC-32 of a data stream
2  * Copyright (C) 1995-2022 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  *
5  * This interleaved implementation of a CRC makes use of pipelined multiple
6  * arithmetic-logic units, commonly found in modern CPU cores. It is due to
7  * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
8  */
9 
10 /* @(#) $Id$ */
11 
12 /*
13  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
14  protection on the static variables used to control the first-use generation
15  of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
16  first call get_crc_table() to initialize the tables before allowing more than
17  one thread to use crc32().
18 
19  MAKECRCH can be #defined to write out crc32.h. A main() routine is also
20  produced, so that this one source file can be compiled to an executable.
21  */
22 
23 #ifdef MAKECRCH
24 # include <stdio.h>
25 # ifndef DYNAMIC_CRC_TABLE
26 # define DYNAMIC_CRC_TABLE
27 # endif /* !DYNAMIC_CRC_TABLE */
28 #endif /* MAKECRCH */
29 
30 #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
31 
32  /*
33  A CRC of a message is computed on N braids of words in the message, where
34  each word consists of W bytes (4 or 8). If N is 3, for example, then three
35  running sparse CRCs are calculated respectively on each braid, at these
36  indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
37  This is done starting at a word boundary, and continues until as many blocks
38  of N * W bytes as are available have been processed. The results are combined
39  into a single CRC at the end. For this code, N must be in the range 1..6 and
40  W must be 4 or 8. The upper limit on N can be increased if desired by adding
41  more #if blocks, extending the patterns apparent in the code. In addition,
42  crc32.h would need to be regenerated, if the maximum N value is increased.
43 
44  N and W are chosen empirically by benchmarking the execution time on a given
45  processor. The choices for N and W below were based on testing on Intel Kaby
46  Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
47  Octeon II processors. The Intel, AMD, and ARM processors were all fastest
48  with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
49  They were all tested with either gcc or clang, all using the -O3 optimization
50  level. Your mileage may vary.
51  */
52 
53 /* Define N */
54 #ifdef Z_TESTN
55 # define N Z_TESTN
56 #else
57 # define N 5
58 #endif
59 #if N < 1 || N > 6
60 # error N must be in 1..6
61 #endif
62 
63 /*
64  z_crc_t must be at least 32 bits. z_word_t must be at least as long as
65  z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
66  that bytes are eight bits.
67  */
68 
69 /*
70  Define W and the associated z_word_t type. If W is not defined, then a
71  braided calculation is not used, and the associated tables and code are not
72  compiled.
73  */
74 #ifdef Z_TESTW
75 # if Z_TESTW-1 != -1
76 # define W Z_TESTW
77 # endif
78 #else
79 # ifdef MAKECRCH
80 # define W 8 /* required for MAKECRCH */
81 # else
82 # if defined(__x86_64__) || defined(__aarch64__)
83 # define W 8
84 # else
85 # define W 4
86 # endif
87 # endif
88 #endif
89 #ifdef W
90 # if W == 8 && defined(Z_U8)
91  typedef Z_U8 z_word_t;
92 # elif defined(Z_U4)
93 # undef W
94 # define W 4
95  typedef Z_U4 z_word_t;
96 # else
97 # undef W
98 # endif
99 #endif
100 
101 /* If available, use the ARM processor CRC32 instruction. */
102 #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
103 # define ARMCRC32
104 #endif
105 
106 #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
107 /*
108  Swap the bytes in a z_word_t to convert between little and big endian. Any
109  self-respecting compiler will optimize this to a single machine byte-swap
110  instruction, if one is available. This assumes that word_t is either 32 bits
111  or 64 bits.
112  */
113 local z_word_t byte_swap(z_word_t word) {
114 # if W == 8
115  return
116  (word & 0xff00000000000000) >> 56 |
117  (word & 0xff000000000000) >> 40 |
118  (word & 0xff0000000000) >> 24 |
119  (word & 0xff00000000) >> 8 |
120  (word & 0xff000000) << 8 |
121  (word & 0xff0000) << 24 |
122  (word & 0xff00) << 40 |
123  (word & 0xff) << 56;
124 # else /* W == 4 */
125  return
126  (word & 0xff000000) >> 24 |
127  (word & 0xff0000) >> 8 |
128  (word & 0xff00) << 8 |
129  (word & 0xff) << 24;
130 # endif
131 }
132 #endif
133 
134 #ifdef DYNAMIC_CRC_TABLE
135 /* =========================================================================
136  * Table of powers of x for combining CRC-32s, filled in by make_crc_table()
137  * below.
138  */
140 #else
141 /* =========================================================================
142  * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
143  * of x for combining CRC-32s, all made by make_crc_table().
144  */
145 # include "crc32.h"
146 #endif
147 
148 /* CRC polynomial. */
149 #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
150 
151 /*
152  Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
153  reflected. For speed, this requires that a not be zero.
154  */
156  z_crc_t m, p;
157 
158  m = (z_crc_t)1 << 31;
159  p = 0;
160  for (;;) {
161  if (a & m) {
162  p ^= b;
163  if ((a & (m - 1)) == 0)
164  break;
165  }
166  m >>= 1;
167  b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
168  }
169  return p;
170 }
171 
172 /*
173  Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
174  initialized.
175  */
176 local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
177  z_crc_t p;
178 
179  p = (z_crc_t)1 << 31; /* x^0 == 1 */
180  while (n) {
181  if (n & 1)
182  p = multmodp(x2n_table[k & 31], p);
183  n >>= 1;
184  k++;
185  }
186  return p;
187 }
188 
189 #ifdef DYNAMIC_CRC_TABLE
190 /* =========================================================================
191  * Build the tables for byte-wise and braided CRC-32 calculations, and a table
192  * of powers of x for combining CRC-32s.
193  */
195 #ifdef W
196  local z_word_t FAR crc_big_table[256];
197  local z_crc_t FAR crc_braid_table[W][256];
198  local z_word_t FAR crc_braid_big_table[W][256];
199  local void braid(z_crc_t [][256], z_word_t [][256], int, int);
200 #endif
201 #ifdef MAKECRCH
202  local void write_table(FILE *, const z_crc_t FAR *, int);
203  local void write_table32hi(FILE *, const z_word_t FAR *, int);
204  local void write_table64(FILE *, const z_word_t FAR *, int);
205 #endif /* MAKECRCH */
206 
207 /*
208  Define a once() function depending on the availability of atomics. If this is
209  compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
210  multiple threads, and if atomics are not available, then get_crc_table() must
211  be called to initialize the tables and must return before any threads are
212  allowed to compute or combine CRCs.
213  */
214 
215 /* Definition of once functionality. */
216 typedef struct once_s once_t;
217 
218 /* Check for the availability of atomics. */
219 #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
220  !defined(__STDC_NO_ATOMICS__)
221 
222 #include <stdatomic.h>
223 
224 /* Structure for once(), which must be initialized with ONCE_INIT. */
225 struct once_s {
226  atomic_flag begun;
227  atomic_int done;
228 };
229 #define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
230 
231 /*
232  Run the provided init() function exactly once, even if multiple threads
233  invoke once() at the same time. The state must be a once_t initialized with
234  ONCE_INIT.
235  */
236 local void once(once_t *state, void (*init)(void)) {
237  if (!atomic_load(&state->done)) {
238  if (atomic_flag_test_and_set(&state->begun))
239  while (!atomic_load(&state->done))
240  ;
241  else {
242  init();
243  atomic_store(&state->done, 1);
244  }
245  }
246 }
247 
248 #else /* no atomics */
249 
250 /* Structure for once(), which must be initialized with ONCE_INIT. */
251 struct once_s {
252  volatile int begun;
253  volatile int done;
254 };
255 #define ONCE_INIT {0, 0}
256 
257 /* Test and set. Alas, not atomic, but tries to minimize the period of
258  vulnerability. */
259 local int test_and_set(int volatile *flag) {
260  int was;
261 
262  was = *flag;
263  *flag = 1;
264  return was;
265 }
266 
267 /* Run the provided init() function once. This is not thread-safe. */
268 local void once(once_t *state, void (*init)(void)) {
269  if (!state->done) {
270  if (test_and_set(&state->begun))
271  while (!state->done)
272  ;
273  else {
274  init();
275  state->done = 1;
276  }
277  }
278 }
279 
280 #endif
281 
282 /* State for once(). */
283 local once_t made = ONCE_INIT;
284 
285 /*
286  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
287  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
288 
289  Polynomials over GF(2) are represented in binary, one bit per coefficient,
290  with the lowest powers in the most significant bit. Then adding polynomials
291  is just exclusive-or, and multiplying a polynomial by x is a right shift by
292  one. If we call the above polynomial p, and represent a byte as the
293  polynomial q, also with the lowest power in the most significant bit (so the
294  byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
295  where a mod b means the remainder after dividing a by b.
296 
297  This calculation is done using the shift-register method of multiplying and
298  taking the remainder. The register is initialized to zero, and for each
299  incoming bit, x^32 is added mod p to the register if the bit is a one (where
300  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
301  (which is shifting right by one and adding x^32 mod p if the bit shifted out
302  is a one). We start with the highest power (least significant bit) of q and
303  repeat for all eight bits of q.
304 
305  The table is simply the CRC of all possible eight bit values. This is all the
306  information needed to generate CRCs on data a byte at a time for all
307  combinations of CRC register values and incoming bytes.
308  */
309 
310 local void make_crc_table(void) {
311  unsigned i, j, n;
312  z_crc_t p;
313 
314  /* initialize the CRC of bytes tables */
315  for (i = 0; i < 256; i++) {
316  p = i;
317  for (j = 0; j < 8; j++)
318  p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
319  crc_table[i] = p;
320 #ifdef W
321  crc_big_table[i] = byte_swap(p);
322 #endif
323  }
324 
325  /* initialize the x^2^n mod p(x) table */
326  p = (z_crc_t)1 << 30; /* x^1 */
327  x2n_table[0] = p;
328  for (n = 1; n < 32; n++)
329  x2n_table[n] = p = multmodp(p, p);
330 
331 #ifdef W
332  /* initialize the braiding tables -- needs x2n_table[] */
333  braid(crc_braid_table, crc_braid_big_table, N, W);
334 #endif
335 
336 #ifdef MAKECRCH
337  {
338  /*
339  The crc32.h header file contains tables for both 32-bit and 64-bit
340  z_word_t's, and so requires a 64-bit type be available. In that case,
341  z_word_t must be defined to be 64-bits. This code then also generates
342  and writes out the tables for the case that z_word_t is 32 bits.
343  */
344 #if !defined(W) || W != 8
345 # error Need a 64-bit integer type in order to generate crc32.h.
346 #endif
347  FILE *out;
348  int k, n;
349  z_crc_t ltl[8][256];
350  z_word_t big[8][256];
351 
352  out = fopen("crc32.h", "w");
353  if (out == NULL) return;
354 
355  /* write out little-endian CRC table to crc32.h */
356  fprintf(out,
357  "/* crc32.h -- tables for rapid CRC calculation\n"
358  " * Generated automatically by crc32.c\n */\n"
359  "\n"
360  "local const z_crc_t FAR crc_table[] = {\n"
361  " ");
362  write_table(out, crc_table, 256);
363  fprintf(out,
364  "};\n");
365 
366  /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
367  fprintf(out,
368  "\n"
369  "#ifdef W\n"
370  "\n"
371  "#if W == 8\n"
372  "\n"
373  "local const z_word_t FAR crc_big_table[] = {\n"
374  " ");
375  write_table64(out, crc_big_table, 256);
376  fprintf(out,
377  "};\n");
378 
379  /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
380  fprintf(out,
381  "\n"
382  "#else /* W == 4 */\n"
383  "\n"
384  "local const z_word_t FAR crc_big_table[] = {\n"
385  " ");
386  write_table32hi(out, crc_big_table, 256);
387  fprintf(out,
388  "};\n"
389  "\n"
390  "#endif\n");
391 
392  /* write out braid tables for each value of N */
393  for (n = 1; n <= 6; n++) {
394  fprintf(out,
395  "\n"
396  "#if N == %d\n", n);
397 
398  /* compute braid tables for this N and 64-bit word_t */
399  braid(ltl, big, n, 8);
400 
401  /* write out braid tables for 64-bit z_word_t to crc32.h */
402  fprintf(out,
403  "\n"
404  "#if W == 8\n"
405  "\n"
406  "local const z_crc_t FAR crc_braid_table[][256] = {\n");
407  for (k = 0; k < 8; k++) {
408  fprintf(out, " {");
409  write_table(out, ltl[k], 256);
410  fprintf(out, "}%s", k < 7 ? ",\n" : "");
411  }
412  fprintf(out,
413  "};\n"
414  "\n"
415  "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
416  for (k = 0; k < 8; k++) {
417  fprintf(out, " {");
418  write_table64(out, big[k], 256);
419  fprintf(out, "}%s", k < 7 ? ",\n" : "");
420  }
421  fprintf(out,
422  "};\n");
423 
424  /* compute braid tables for this N and 32-bit word_t */
425  braid(ltl, big, n, 4);
426 
427  /* write out braid tables for 32-bit z_word_t to crc32.h */
428  fprintf(out,
429  "\n"
430  "#else /* W == 4 */\n"
431  "\n"
432  "local const z_crc_t FAR crc_braid_table[][256] = {\n");
433  for (k = 0; k < 4; k++) {
434  fprintf(out, " {");
435  write_table(out, ltl[k], 256);
436  fprintf(out, "}%s", k < 3 ? ",\n" : "");
437  }
438  fprintf(out,
439  "};\n"
440  "\n"
441  "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
442  for (k = 0; k < 4; k++) {
443  fprintf(out, " {");
444  write_table32hi(out, big[k], 256);
445  fprintf(out, "}%s", k < 3 ? ",\n" : "");
446  }
447  fprintf(out,
448  "};\n"
449  "\n"
450  "#endif\n"
451  "\n"
452  "#endif\n");
453  }
454  fprintf(out,
455  "\n"
456  "#endif\n");
457 
458  /* write out zeros operator table to crc32.h */
459  fprintf(out,
460  "\n"
461  "local const z_crc_t FAR x2n_table[] = {\n"
462  " ");
463  write_table(out, x2n_table, 32);
464  fprintf(out,
465  "};\n");
466  fclose(out);
467  }
468 #endif /* MAKECRCH */
469 }
470 
471 #ifdef MAKECRCH
472 
473 /*
474  Write the 32-bit values in table[0..k-1] to out, five per line in
475  hexadecimal separated by commas.
476  */
477 local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
478  int n;
479 
480  for (n = 0; n < k; n++)
481  fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
482  (unsigned long)(table[n]),
483  n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
484 }
485 
486 /*
487  Write the high 32-bits of each value in table[0..k-1] to out, five per line
488  in hexadecimal separated by commas.
489  */
490 local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
491  int n;
492 
493  for (n = 0; n < k; n++)
494  fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
495  (unsigned long)(table[n] >> 32),
496  n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
497 }
498 
499 /*
500  Write the 64-bit values in table[0..k-1] to out, three per line in
501  hexadecimal separated by commas. This assumes that if there is a 64-bit
502  type, then there is also a long long integer type, and it is at least 64
503  bits. If not, then the type cast and format string can be adjusted
504  accordingly.
505  */
506 local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
507  int n;
508 
509  for (n = 0; n < k; n++)
510  fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ",
511  (unsigned long long)(table[n]),
512  n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
513 }
514 
515 /* Actually do the deed. */
516 int main(void) {
517  make_crc_table();
518  return 0;
519 }
520 
521 #endif /* MAKECRCH */
522 
523 #ifdef W
524 /*
525  Generate the little and big-endian braid tables for the given n and z_word_t
526  size w. Each array must have room for w blocks of 256 elements.
527  */
528 local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
529  int k;
530  z_crc_t i, p, q;
531  for (k = 0; k < w; k++) {
532  p = x2nmodp((n * w + 3 - k) << 3, 0);
533  ltl[k][0] = 0;
534  big[w - 1 - k][0] = 0;
535  for (i = 1; i < 256; i++) {
536  ltl[k][i] = q = multmodp(i << 24, p);
537  big[w - 1 - k][i] = byte_swap(q);
538  }
539  }
540 }
541 #endif
542 
543 #endif /* DYNAMIC_CRC_TABLE */
544 
545 /* =========================================================================
546  * This function can be used by asm versions of crc32(), and to force the
547  * generation of the CRC tables in a threaded application.
548  */
550 #ifdef DYNAMIC_CRC_TABLE
551  once(&made, make_crc_table);
552 #endif /* DYNAMIC_CRC_TABLE */
553  return (const z_crc_t FAR *)crc_table;
554 }
555 
556 /* =========================================================================
557  * Use ARM machine instructions if available. This will compute the CRC about
558  * ten times faster than the braided calculation. This code does not check for
559  * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
560  * only be defined if the compilation specifies an ARM processor architecture
561  * that has the instructions. For example, compiling with -march=armv8.1-a or
562  * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
563  * instructions.
564  */
565 #ifdef ARMCRC32
566 
567 /*
568  Constants empirically determined to maximize speed. These values are from
569  measurements on a Cortex-A57. Your mileage may vary.
570  */
571 #define Z_BATCH 3990 /* number of words in a batch */
572 #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
573 #define Z_BATCH_MIN 800 /* fewest words in a final batch */
574 
575 unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
576  z_size_t len) {
577  z_crc_t val;
578  z_word_t crc1, crc2;
579  const z_word_t *word;
580  z_word_t val0, val1, val2;
581  z_size_t last, last2, i;
582  z_size_t num;
583 
584  /* Return initial CRC, if requested. */
585  if (buf == Z_NULL) return 0;
586 
587 #ifdef DYNAMIC_CRC_TABLE
588  once(&made, make_crc_table);
589 #endif /* DYNAMIC_CRC_TABLE */
590 
591  /* Pre-condition the CRC */
592  crc = (~crc) & 0xffffffff;
593 
594  /* Compute the CRC up to a word boundary. */
595  while (len && ((z_size_t)buf & 7) != 0) {
596  len--;
597  val = *buf++;
598  __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
599  }
600 
601  /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
602  word = (z_word_t const *)buf;
603  num = len >> 3;
604  len &= 7;
605 
606  /* Do three interleaved CRCs to realize the throughput of one crc32x
607  instruction per cycle. Each CRC is calculated on Z_BATCH words. The
608  three CRCs are combined into a single CRC after each set of batches. */
609  while (num >= 3 * Z_BATCH) {
610  crc1 = 0;
611  crc2 = 0;
612  for (i = 0; i < Z_BATCH; i++) {
613  val0 = word[i];
614  val1 = word[i + Z_BATCH];
615  val2 = word[i + 2 * Z_BATCH];
616  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
617  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
618  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
619  }
620  word += 3 * Z_BATCH;
621  num -= 3 * Z_BATCH;
622  crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
623  crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
624  }
625 
626  /* Do one last smaller batch with the remaining words, if there are enough
627  to pay for the combination of CRCs. */
628  last = num / 3;
629  if (last >= Z_BATCH_MIN) {
630  last2 = last << 1;
631  crc1 = 0;
632  crc2 = 0;
633  for (i = 0; i < last; i++) {
634  val0 = word[i];
635  val1 = word[i + last];
636  val2 = word[i + last2];
637  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
638  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
639  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
640  }
641  word += 3 * last;
642  num -= 3 * last;
643  val = x2nmodp(last, 6);
644  crc = multmodp(val, crc) ^ crc1;
645  crc = multmodp(val, crc) ^ crc2;
646  }
647 
648  /* Compute the CRC on any remaining words. */
649  for (i = 0; i < num; i++) {
650  val0 = word[i];
651  __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
652  }
653  word += num;
654 
655  /* Complete the CRC on any remaining bytes. */
656  buf = (const unsigned char FAR *)word;
657  while (len) {
658  len--;
659  val = *buf++;
660  __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
661  }
662 
663  /* Return the CRC, post-conditioned. */
664  return crc ^ 0xffffffff;
665 }
666 
667 #else
668 
669 #ifdef W
670 
671 /*
672  Return the CRC of the W bytes in the word_t data, taking the
673  least-significant byte of the word as the first byte of data, without any pre
674  or post conditioning. This is used to combine the CRCs of each braid.
675  */
676 local z_crc_t crc_word(z_word_t data) {
677  int k;
678  for (k = 0; k < W; k++)
679  data = (data >> 8) ^ crc_table[data & 0xff];
680  return (z_crc_t)data;
681 }
682 
683 local z_word_t crc_word_big(z_word_t data) {
684  int k;
685  for (k = 0; k < W; k++)
686  data = (data << 8) ^
687  crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
688  return data;
689 }
690 
691 #endif
692 
693 /* ========================================================================= */
694 unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
695  z_size_t len) {
696  /* Return initial CRC, if requested. */
697  if (buf == Z_NULL) return 0;
698 
699 #ifdef DYNAMIC_CRC_TABLE
700  once(&made, make_crc_table);
701 #endif /* DYNAMIC_CRC_TABLE */
702 
703  /* Pre-condition the CRC */
704  crc = (~crc) & 0xffffffff;
705 
706 #ifdef W
707 
708  /* If provided enough bytes, do a braided CRC calculation. */
709  if (len >= N * W + W - 1) {
710  z_size_t blks;
711  z_word_t const *words;
712  unsigned endian;
713  int k;
714 
715  /* Compute the CRC up to a z_word_t boundary. */
716  while (len && ((z_size_t)buf & (W - 1)) != 0) {
717  len--;
718  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
719  }
720 
721  /* Compute the CRC on as many N z_word_t blocks as are available. */
722  blks = len / (N * W);
723  len -= blks * N * W;
724  words = (z_word_t const *)buf;
725 
726  /* Do endian check at execution time instead of compile time, since ARM
727  processors can change the endianness at execution time. If the
728  compiler knows what the endianness will be, it can optimize out the
729  check and the unused branch. */
730  endian = 1;
731  if (*(unsigned char *)&endian) {
732  /* Little endian. */
733 
734  z_crc_t crc0;
735  z_word_t word0;
736 #if N > 1
737  z_crc_t crc1;
738  z_word_t word1;
739 #if N > 2
740  z_crc_t crc2;
741  z_word_t word2;
742 #if N > 3
743  z_crc_t crc3;
744  z_word_t word3;
745 #if N > 4
746  z_crc_t crc4;
747  z_word_t word4;
748 #if N > 5
749  z_crc_t crc5;
750  z_word_t word5;
751 #endif
752 #endif
753 #endif
754 #endif
755 #endif
756 
757  /* Initialize the CRC for each braid. */
758  crc0 = crc;
759 #if N > 1
760  crc1 = 0;
761 #if N > 2
762  crc2 = 0;
763 #if N > 3
764  crc3 = 0;
765 #if N > 4
766  crc4 = 0;
767 #if N > 5
768  crc5 = 0;
769 #endif
770 #endif
771 #endif
772 #endif
773 #endif
774 
775  /*
776  Process the first blks-1 blocks, computing the CRCs on each braid
777  independently.
778  */
779  while (--blks) {
780  /* Load the word for each braid into registers. */
781  word0 = crc0 ^ words[0];
782 #if N > 1
783  word1 = crc1 ^ words[1];
784 #if N > 2
785  word2 = crc2 ^ words[2];
786 #if N > 3
787  word3 = crc3 ^ words[3];
788 #if N > 4
789  word4 = crc4 ^ words[4];
790 #if N > 5
791  word5 = crc5 ^ words[5];
792 #endif
793 #endif
794 #endif
795 #endif
796 #endif
797  words += N;
798 
799  /* Compute and update the CRC for each word. The loop should
800  get unrolled. */
801  crc0 = crc_braid_table[0][word0 & 0xff];
802 #if N > 1
803  crc1 = crc_braid_table[0][word1 & 0xff];
804 #if N > 2
805  crc2 = crc_braid_table[0][word2 & 0xff];
806 #if N > 3
807  crc3 = crc_braid_table[0][word3 & 0xff];
808 #if N > 4
809  crc4 = crc_braid_table[0][word4 & 0xff];
810 #if N > 5
811  crc5 = crc_braid_table[0][word5 & 0xff];
812 #endif
813 #endif
814 #endif
815 #endif
816 #endif
817  for (k = 1; k < W; k++) {
818  crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
819 #if N > 1
820  crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
821 #if N > 2
822  crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
823 #if N > 3
824  crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
825 #if N > 4
826  crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
827 #if N > 5
828  crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
829 #endif
830 #endif
831 #endif
832 #endif
833 #endif
834  }
835  }
836 
837  /*
838  Process the last block, combining the CRCs of the N braids at the
839  same time.
840  */
841  crc = crc_word(crc0 ^ words[0]);
842 #if N > 1
843  crc = crc_word(crc1 ^ words[1] ^ crc);
844 #if N > 2
845  crc = crc_word(crc2 ^ words[2] ^ crc);
846 #if N > 3
847  crc = crc_word(crc3 ^ words[3] ^ crc);
848 #if N > 4
849  crc = crc_word(crc4 ^ words[4] ^ crc);
850 #if N > 5
851  crc = crc_word(crc5 ^ words[5] ^ crc);
852 #endif
853 #endif
854 #endif
855 #endif
856 #endif
857  words += N;
858  }
859  else {
860  /* Big endian. */
861 
862  z_word_t crc0, word0, comb;
863 #if N > 1
864  z_word_t crc1, word1;
865 #if N > 2
866  z_word_t crc2, word2;
867 #if N > 3
868  z_word_t crc3, word3;
869 #if N > 4
870  z_word_t crc4, word4;
871 #if N > 5
872  z_word_t crc5, word5;
873 #endif
874 #endif
875 #endif
876 #endif
877 #endif
878 
879  /* Initialize the CRC for each braid. */
880  crc0 = byte_swap(crc);
881 #if N > 1
882  crc1 = 0;
883 #if N > 2
884  crc2 = 0;
885 #if N > 3
886  crc3 = 0;
887 #if N > 4
888  crc4 = 0;
889 #if N > 5
890  crc5 = 0;
891 #endif
892 #endif
893 #endif
894 #endif
895 #endif
896 
897  /*
898  Process the first blks-1 blocks, computing the CRCs on each braid
899  independently.
900  */
901  while (--blks) {
902  /* Load the word for each braid into registers. */
903  word0 = crc0 ^ words[0];
904 #if N > 1
905  word1 = crc1 ^ words[1];
906 #if N > 2
907  word2 = crc2 ^ words[2];
908 #if N > 3
909  word3 = crc3 ^ words[3];
910 #if N > 4
911  word4 = crc4 ^ words[4];
912 #if N > 5
913  word5 = crc5 ^ words[5];
914 #endif
915 #endif
916 #endif
917 #endif
918 #endif
919  words += N;
920 
921  /* Compute and update the CRC for each word. The loop should
922  get unrolled. */
923  crc0 = crc_braid_big_table[0][word0 & 0xff];
924 #if N > 1
925  crc1 = crc_braid_big_table[0][word1 & 0xff];
926 #if N > 2
927  crc2 = crc_braid_big_table[0][word2 & 0xff];
928 #if N > 3
929  crc3 = crc_braid_big_table[0][word3 & 0xff];
930 #if N > 4
931  crc4 = crc_braid_big_table[0][word4 & 0xff];
932 #if N > 5
933  crc5 = crc_braid_big_table[0][word5 & 0xff];
934 #endif
935 #endif
936 #endif
937 #endif
938 #endif
939  for (k = 1; k < W; k++) {
940  crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
941 #if N > 1
942  crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
943 #if N > 2
944  crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
945 #if N > 3
946  crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
947 #if N > 4
948  crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
949 #if N > 5
950  crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
951 #endif
952 #endif
953 #endif
954 #endif
955 #endif
956  }
957  }
958 
959  /*
960  Process the last block, combining the CRCs of the N braids at the
961  same time.
962  */
963  comb = crc_word_big(crc0 ^ words[0]);
964 #if N > 1
965  comb = crc_word_big(crc1 ^ words[1] ^ comb);
966 #if N > 2
967  comb = crc_word_big(crc2 ^ words[2] ^ comb);
968 #if N > 3
969  comb = crc_word_big(crc3 ^ words[3] ^ comb);
970 #if N > 4
971  comb = crc_word_big(crc4 ^ words[4] ^ comb);
972 #if N > 5
973  comb = crc_word_big(crc5 ^ words[5] ^ comb);
974 #endif
975 #endif
976 #endif
977 #endif
978 #endif
979  words += N;
980  crc = byte_swap(comb);
981  }
982 
983  /*
984  Update the pointer to the remaining bytes to process.
985  */
986  buf = (unsigned char const *)words;
987  }
988 
989 #endif /* W */
990 
991  /* Complete the computation of the CRC on any remaining bytes. */
992  while (len >= 8) {
993  len -= 8;
994  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
995  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
996  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
997  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
998  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
999  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1000  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1001  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1002  }
1003  while (len) {
1004  len--;
1005  crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1006  }
1007 
1008  /* Return the CRC, post-conditioned. */
1009  return crc ^ 0xffffffff;
1010 }
1011 
1012 #endif
1013 
1014 /* ========================================================================= */
1015 unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
1016  uInt len) {
1017  return crc32_z(crc, buf, len);
1018 }
1019 
1020 /* ========================================================================= */
1022 #ifdef DYNAMIC_CRC_TABLE
1023  once(&made, make_crc_table);
1024 #endif /* DYNAMIC_CRC_TABLE */
1025  return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
1026 }
1027 
1028 /* ========================================================================= */
1030  return crc32_combine64(crc1, crc2, (z_off64_t)len2);
1031 }
1032 
1033 /* ========================================================================= */
1035 #ifdef DYNAMIC_CRC_TABLE
1036  once(&made, make_crc_table);
1037 #endif /* DYNAMIC_CRC_TABLE */
1038  return x2nmodp(len2, 3);
1039 }
1040 
1041 /* ========================================================================= */
1043  return crc32_combine_gen64((z_off64_t)len2);
1044 }
1045 
1046 /* ========================================================================= */
1048  return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
1049 }
unsigned long z_size_t
Definition: zconf.h:257
unsigned long z_crc_t
Definition: zconf.h:433
local const z_crc_t FAR crc_table[]
Definition: crc32.h:5
local const z_crc_t FAR x2n_table[]
Definition: crc32.h:9439
#define z_off_t
Definition: zconf.h:513
#define z_off64_t
Definition: zconf.h:522
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2)
Definition: crc32.c:1034
uLong ZEXPORT crc32_combine_gen(z_off_t len2)
Definition: crc32.c:1042
voidpf void * buf
Definition: ioapi.h:136
#define POLY
Definition: crc32.c:149
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, z_size_t len)
Definition: crc32.c:694
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2)
Definition: crc32.c:1029
local z_crc_t multmodp(z_crc_t a, z_crc_t b)
Definition: crc32.c:155
unsigned long uLong
Definition: zconf.h:396
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, uInt len)
Definition: crc32.c:1015
#define local
Definition: unzip.c:91
#define W
Definition: crc32.c:85
const z_crc_t FAR *ZEXPORT get_crc_table(void)
Definition: crc32.c:549
int main(int argc, char *argv[])
Definition: default.cpp:2
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2)
Definition: crc32.c:1021
#define N
Definition: crc32.c:57
#define Z_NULL
Definition: zlib.h:212
#define FAR
Definition: zconf.h:389
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op)
Definition: crc32.c:1047
local z_crc_t x2nmodp(z_off64_t n, unsigned k)
Definition: crc32.c:176
#define ZEXPORT
Definition: zconf.h:382
state
Definition: http_parser.c:279
unsigned int uInt
Definition: zconf.h:395