TTKMusicPlayer  3.7.0.0
TTKMusicPlayer imitates Kugou UI, the music player uses of qmmp core library based on Qt for windows and linux
trees.c
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2024 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef ZLIB_DEBUG
40 # include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6 16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10 17
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58 
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
72  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 # include "trees.h"
115 #endif /* GEN_TREES_H */
116 
118  const ct_data *static_tree; /* static tree or NULL */
119  const intf *extra_bits; /* extra bits for each code or NULL */
120  int extra_base; /* base index for extra_bits */
121  int elems; /* max number of elements in the tree */
122  int max_length; /* max bit length for the codes */
123 };
124 
125 #ifdef NO_INIT_GLOBAL_POINTERS
126 # define TCONST
127 #else
128 # define TCONST const
129 #endif
130 
133 
136 
138 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
139 
140 /* ===========================================================================
141  * Output a short LSB first on the stream.
142  * IN assertion: there is enough room in pendingBuf.
143  */
144 #define put_short(s, w) { \
145  put_byte(s, (uch)((w) & 0xff)); \
146  put_byte(s, (uch)((ush)(w) >> 8)); \
147 }
148 
149 /* ===========================================================================
150  * Reverse the first len bits of a code, using straightforward code (a faster
151  * method would use a table)
152  * IN assertion: 1 <= len <= 15
153  */
154 local unsigned bi_reverse(unsigned code, int len) {
155  register unsigned res = 0;
156  do {
157  res |= code & 1;
158  code >>= 1, res <<= 1;
159  } while (--len > 0);
160  return res >> 1;
161 }
162 
163 /* ===========================================================================
164  * Flush the bit buffer, keeping at most 7 bits in it.
165  */
167  if (s->bi_valid == 16) {
168  put_short(s, s->bi_buf);
169  s->bi_buf = 0;
170  s->bi_valid = 0;
171  } else if (s->bi_valid >= 8) {
172  put_byte(s, (Byte)s->bi_buf);
173  s->bi_buf >>= 8;
174  s->bi_valid -= 8;
175  }
176 }
177 
178 /* ===========================================================================
179  * Flush the bit buffer and align the output on a byte boundary
180  */
182  if (s->bi_valid > 8) {
183  put_short(s, s->bi_buf);
184  } else if (s->bi_valid > 0) {
185  put_byte(s, (Byte)s->bi_buf);
186  }
187  s->bi_buf = 0;
188  s->bi_valid = 0;
189 #ifdef ZLIB_DEBUG
190  s->bits_sent = (s->bits_sent + 7) & ~7;
191 #endif
192 }
193 
194 /* ===========================================================================
195  * Generate the codes for a given tree and bit counts (which need not be
196  * optimal).
197  * IN assertion: the array bl_count contains the bit length statistics for
198  * the given tree and the field len is set for all tree elements.
199  * OUT assertion: the field code is set for all tree elements of non
200  * zero code length.
201  */
202 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204  unsigned code = 0; /* running code value */
205  int bits; /* bit index */
206  int n; /* code index */
207 
208  /* The distribution counts are first used to generate the code values
209  * without bit reversal.
210  */
211  for (bits = 1; bits <= MAX_BITS; bits++) {
212  code = (code + bl_count[bits - 1]) << 1;
213  next_code[bits] = (ush)code;
214  }
215  /* Check that the bit counts in bl_count are consistent. The last code
216  * must be all ones.
217  */
218  Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219  "inconsistent bit counts");
220  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221 
222  for (n = 0; n <= max_code; n++) {
223  int len = tree[n].Len;
224  if (len == 0) continue;
225  /* Now reverse the bits */
226  tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227 
228  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230  }
231 }
232 
233 #ifdef GEN_TREES_H
234 local void gen_trees_header(void);
235 #endif
236 
237 #ifndef ZLIB_DEBUG
238 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239  /* Send a code of the given tree. c and tree must not have side effects */
240 
241 #else /* !ZLIB_DEBUG */
242 # define send_code(s, c, tree) \
243  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244  send_bits(s, tree[c].Code, tree[c].Len); }
245 #endif
246 
247 /* ===========================================================================
248  * Send a value on a given number of bits.
249  * IN assertion: length <= 16 and value fits in length bits.
250  */
251 #ifdef ZLIB_DEBUG
252 local void send_bits(deflate_state *s, int value, int length) {
253  Tracevv((stderr," l %2d v %4x ", length, value));
254  Assert(length > 0 && length <= 15, "invalid length");
255  s->bits_sent += (ulg)length;
256 
257  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
258  * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
259  * unused bits in value.
260  */
261  if (s->bi_valid > (int)Buf_size - length) {
262  s->bi_buf |= (ush)value << s->bi_valid;
263  put_short(s, s->bi_buf);
264  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265  s->bi_valid += length - Buf_size;
266  } else {
267  s->bi_buf |= (ush)value << s->bi_valid;
268  s->bi_valid += length;
269  }
270 }
271 #else /* !ZLIB_DEBUG */
272 
273 #define send_bits(s, value, length) \
274 { int len = length;\
275  if (s->bi_valid > (int)Buf_size - len) {\
276  int val = (int)value;\
277  s->bi_buf |= (ush)val << s->bi_valid;\
278  put_short(s, s->bi_buf);\
279  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280  s->bi_valid += len - Buf_size;\
281  } else {\
282  s->bi_buf |= (ush)(value) << s->bi_valid;\
283  s->bi_valid += len;\
284  }\
285 }
286 #endif /* ZLIB_DEBUG */
287 
288 
289 /* the arguments must not have side effects */
290 
291 /* ===========================================================================
292  * Initialize the various 'constant' tables.
293  */
294 local void tr_static_init(void) {
295 #if defined(GEN_TREES_H) || !defined(STDC)
296  static int static_init_done = 0;
297  int n; /* iterates over tree elements */
298  int bits; /* bit counter */
299  int length; /* length value */
300  int code; /* code value */
301  int dist; /* distance index */
302  ush bl_count[MAX_BITS+1];
303  /* number of codes at each bit length for an optimal tree */
304 
305  if (static_init_done) return;
306 
307  /* For some embedded targets, global variables are not initialized: */
308 #ifdef NO_INIT_GLOBAL_POINTERS
314 #endif
315 
316  /* Initialize the mapping length (0..255) -> length code (0..28) */
317  length = 0;
318  for (code = 0; code < LENGTH_CODES-1; code++) {
319  base_length[code] = length;
320  for (n = 0; n < (1 << extra_lbits[code]); n++) {
321  _length_code[length++] = (uch)code;
322  }
323  }
324  Assert (length == 256, "tr_static_init: length != 256");
325  /* Note that the length 255 (match length 258) can be represented
326  * in two different ways: code 284 + 5 bits or code 285, so we
327  * overwrite length_code[255] to use the best encoding:
328  */
329  _length_code[length - 1] = (uch)code;
330 
331  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332  dist = 0;
333  for (code = 0 ; code < 16; code++) {
334  base_dist[code] = dist;
335  for (n = 0; n < (1 << extra_dbits[code]); n++) {
336  _dist_code[dist++] = (uch)code;
337  }
338  }
339  Assert (dist == 256, "tr_static_init: dist != 256");
340  dist >>= 7; /* from now on, all distances are divided by 128 */
341  for ( ; code < D_CODES; code++) {
342  base_dist[code] = dist << 7;
343  for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
344  _dist_code[256 + dist++] = (uch)code;
345  }
346  }
347  Assert (dist == 256, "tr_static_init: 256 + dist != 512");
348 
349  /* Construct the codes of the static literal tree */
350  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351  n = 0;
352  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356  /* Codes 286 and 287 do not exist, but we must include them in the
357  * tree construction to get a canonical Huffman tree (longest code
358  * all ones)
359  */
360  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361 
362  /* The static distance tree is trivial: */
363  for (n = 0; n < D_CODES; n++) {
364  static_dtree[n].Len = 5;
365  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366  }
367  static_init_done = 1;
368 
369 # ifdef GEN_TREES_H
370  gen_trees_header();
371 # endif
372 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
373 }
374 
375 /* ===========================================================================
376  * Generate the file trees.h describing the static trees.
377  */
378 #ifdef GEN_TREES_H
379 # ifndef ZLIB_DEBUG
380 # include <stdio.h>
381 # endif
382 
383 # define SEPARATOR(i, last, width) \
384  ((i) == (last)? "\n};\n\n" : \
385  ((i) % (width) == (width) - 1 ? ",\n" : ", "))
386 
387 void gen_trees_header(void) {
388  FILE *header = fopen("trees.h", "w");
389  int i;
390 
391  Assert (header != NULL, "Can't open trees.h");
392  fprintf(header,
393  "/* header created automatically with -DGEN_TREES_H */\n\n");
394 
395  fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396  for (i = 0; i < L_CODES+2; i++) {
397  fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399  }
400 
401  fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402  for (i = 0; i < D_CODES; i++) {
403  fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405  }
406 
407  fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408  for (i = 0; i < DIST_CODE_LEN; i++) {
409  fprintf(header, "%2u%s", _dist_code[i],
410  SEPARATOR(i, DIST_CODE_LEN-1, 20));
411  }
412 
413  fprintf(header,
414  "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416  fprintf(header, "%2u%s", _length_code[i],
417  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418  }
419 
420  fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421  for (i = 0; i < LENGTH_CODES; i++) {
422  fprintf(header, "%1u%s", base_length[i],
423  SEPARATOR(i, LENGTH_CODES-1, 20));
424  }
425 
426  fprintf(header, "local const int base_dist[D_CODES] = {\n");
427  for (i = 0; i < D_CODES; i++) {
428  fprintf(header, "%5u%s", base_dist[i],
429  SEPARATOR(i, D_CODES-1, 10));
430  }
431 
432  fclose(header);
433 }
434 #endif /* GEN_TREES_H */
435 
436 /* ===========================================================================
437  * Initialize a new block.
438  */
440  int n; /* iterates over tree elements */
441 
442  /* Initialize the trees. */
443  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
444  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
445  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446 
447  s->dyn_ltree[END_BLOCK].Freq = 1;
448  s->opt_len = s->static_len = 0L;
449  s->sym_next = s->matches = 0;
450 }
451 
452 /* ===========================================================================
453  * Initialize the tree data structures for a new zlib stream.
454  */
456  tr_static_init();
457 
458  s->l_desc.dyn_tree = s->dyn_ltree;
460 
461  s->d_desc.dyn_tree = s->dyn_dtree;
463 
464  s->bl_desc.dyn_tree = s->bl_tree;
466 
467  s->bi_buf = 0;
468  s->bi_valid = 0;
469 #ifdef ZLIB_DEBUG
470  s->compressed_len = 0L;
471  s->bits_sent = 0L;
472 #endif
473 
474  /* Initialize the first block of the first file: */
475  init_block(s);
476 }
477 
478 #define SMALLEST 1
479 /* Index within the heap array of least frequent node in the Huffman tree */
480 
481 
482 /* ===========================================================================
483  * Remove the smallest element from the heap and recreate the heap with
484  * one less element. Updates heap and heap_len.
485  */
486 #define pqremove(s, tree, top) \
487 {\
488  top = s->heap[SMALLEST]; \
489  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
490  pqdownheap(s, tree, SMALLEST); \
491 }
492 
493 /* ===========================================================================
494  * Compares to subtrees, using the tree depth as tie breaker when
495  * the subtrees have equal frequency. This minimizes the worst case length.
496  */
497 #define smaller(tree, n, m, depth) \
498  (tree[n].Freq < tree[m].Freq || \
499  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
500 
501 /* ===========================================================================
502  * Restore the heap property by moving down the tree starting at node k,
503  * exchanging a node with the smallest of its two sons if necessary, stopping
504  * when the heap property is re-established (each father smaller than its
505  * two sons).
506  */
507 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
508  int v = s->heap[k];
509  int j = k << 1; /* left son of k */
510  while (j <= s->heap_len) {
511  /* Set j to the smallest of the two sons: */
512  if (j < s->heap_len &&
513  smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
514  j++;
515  }
516  /* Exit if v is smaller than both sons */
517  if (smaller(tree, v, s->heap[j], s->depth)) break;
518 
519  /* Exchange v with the smallest son */
520  s->heap[k] = s->heap[j]; k = j;
521 
522  /* And continue down the tree, setting j to the left son of k */
523  j <<= 1;
524  }
525  s->heap[k] = v;
526 }
527 
528 /* ===========================================================================
529  * Compute the optimal bit lengths for a tree and update the total bit length
530  * for the current block.
531  * IN assertion: the fields freq and dad are set, heap[heap_max] and
532  * above are the tree nodes sorted by increasing frequency.
533  * OUT assertions: the field len is set to the optimal bit length, the
534  * array bl_count contains the frequencies for each bit length.
535  * The length opt_len is updated; static_len is also updated if stree is
536  * not null.
537  */
539  ct_data *tree = desc->dyn_tree;
540  int max_code = desc->max_code;
541  const ct_data *stree = desc->stat_desc->static_tree;
542  const intf *extra = desc->stat_desc->extra_bits;
543  int base = desc->stat_desc->extra_base;
544  int max_length = desc->stat_desc->max_length;
545  int h; /* heap index */
546  int n, m; /* iterate over the tree elements */
547  int bits; /* bit length */
548  int xbits; /* extra bits */
549  ush f; /* frequency */
550  int overflow = 0; /* number of elements with bit length too large */
551 
552  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
553 
554  /* In a first pass, compute the optimal bit lengths (which may
555  * overflow in the case of the bit length tree).
556  */
557  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
558 
559  for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
560  n = s->heap[h];
561  bits = tree[tree[n].Dad].Len + 1;
562  if (bits > max_length) bits = max_length, overflow++;
563  tree[n].Len = (ush)bits;
564  /* We overwrite tree[n].Dad which is no longer needed */
565 
566  if (n > max_code) continue; /* not a leaf node */
567 
568  s->bl_count[bits]++;
569  xbits = 0;
570  if (n >= base) xbits = extra[n - base];
571  f = tree[n].Freq;
572  s->opt_len += (ulg)f * (unsigned)(bits + xbits);
573  if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
574  }
575  if (overflow == 0) return;
576 
577  Tracev((stderr,"\nbit length overflow\n"));
578  /* This happens for example on obj2 and pic of the Calgary corpus */
579 
580  /* Find the first bit length which could increase: */
581  do {
582  bits = max_length - 1;
583  while (s->bl_count[bits] == 0) bits--;
584  s->bl_count[bits]--; /* move one leaf down the tree */
585  s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
586  s->bl_count[max_length]--;
587  /* The brother of the overflow item also moves one step up,
588  * but this does not affect bl_count[max_length]
589  */
590  overflow -= 2;
591  } while (overflow > 0);
592 
593  /* Now recompute all bit lengths, scanning in increasing frequency.
594  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
595  * lengths instead of fixing only the wrong ones. This idea is taken
596  * from 'ar' written by Haruhiko Okumura.)
597  */
598  for (bits = max_length; bits != 0; bits--) {
599  n = s->bl_count[bits];
600  while (n != 0) {
601  m = s->heap[--h];
602  if (m > max_code) continue;
603  if ((unsigned) tree[m].Len != (unsigned) bits) {
604  Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
605  s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
606  tree[m].Len = (ush)bits;
607  }
608  n--;
609  }
610  }
611 }
612 
613 #ifdef DUMP_BL_TREE
614 # include <stdio.h>
615 #endif
616 
617 /* ===========================================================================
618  * Construct one Huffman tree and assigns the code bit strings and lengths.
619  * Update the total bit length for the current block.
620  * IN assertion: the field freq is set for all tree elements.
621  * OUT assertions: the fields len and code are set to the optimal bit length
622  * and corresponding code. The length opt_len is updated; static_len is
623  * also updated if stree is not null. The field max_code is set.
624  */
626  ct_data *tree = desc->dyn_tree;
627  const ct_data *stree = desc->stat_desc->static_tree;
628  int elems = desc->stat_desc->elems;
629  int n, m; /* iterate over heap elements */
630  int max_code = -1; /* largest code with non zero frequency */
631  int node; /* new node being created */
632 
633  /* Construct the initial heap, with least frequent element in
634  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635  * heap[0] is not used.
636  */
637  s->heap_len = 0, s->heap_max = HEAP_SIZE;
638 
639  for (n = 0; n < elems; n++) {
640  if (tree[n].Freq != 0) {
641  s->heap[++(s->heap_len)] = max_code = n;
642  s->depth[n] = 0;
643  } else {
644  tree[n].Len = 0;
645  }
646  }
647 
648  /* The pkzip format requires that at least one distance code exists,
649  * and that at least one bit should be sent even if there is only one
650  * possible code. So to avoid special checks later on we force at least
651  * two codes of non zero frequency.
652  */
653  while (s->heap_len < 2) {
654  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655  tree[node].Freq = 1;
656  s->depth[node] = 0;
657  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658  /* node is 0 or 1 so it does not have extra bits */
659  }
660  desc->max_code = max_code;
661 
662  /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663  * establish sub-heaps of increasing lengths:
664  */
665  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666 
667  /* Construct the Huffman tree by repeatedly combining the least two
668  * frequent nodes.
669  */
670  node = elems; /* next internal node of the tree */
671  do {
672  pqremove(s, tree, n); /* n = node of least frequency */
673  m = s->heap[SMALLEST]; /* m = node of next least frequency */
674 
675  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676  s->heap[--(s->heap_max)] = m;
677 
678  /* Create a new node father of n and m */
679  tree[node].Freq = tree[n].Freq + tree[m].Freq;
680  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681  s->depth[n] : s->depth[m]) + 1);
682  tree[n].Dad = tree[m].Dad = (ush)node;
683 #ifdef DUMP_BL_TREE
684  if (tree == s->bl_tree) {
685  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687  }
688 #endif
689  /* and insert the new node in the heap */
690  s->heap[SMALLEST] = node++;
691  pqdownheap(s, tree, SMALLEST);
692 
693  } while (s->heap_len >= 2);
694 
695  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696 
697  /* At this point, the fields freq and dad are set. We can now
698  * generate the bit lengths.
699  */
700  gen_bitlen(s, (tree_desc *)desc);
701 
702  /* The field len is now set, we can generate the bit codes */
703  gen_codes ((ct_data *)tree, max_code, s->bl_count);
704 }
705 
706 /* ===========================================================================
707  * Scan a literal or distance tree to determine the frequencies of the codes
708  * in the bit length tree.
709  */
710 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
711  int n; /* iterates over all tree elements */
712  int prevlen = -1; /* last emitted length */
713  int curlen; /* length of current code */
714  int nextlen = tree[0].Len; /* length of next code */
715  int count = 0; /* repeat count of the current code */
716  int max_count = 7; /* max repeat count */
717  int min_count = 4; /* min repeat count */
718 
719  if (nextlen == 0) max_count = 138, min_count = 3;
720  tree[max_code + 1].Len = (ush)0xffff; /* guard */
721 
722  for (n = 0; n <= max_code; n++) {
723  curlen = nextlen; nextlen = tree[n + 1].Len;
724  if (++count < max_count && curlen == nextlen) {
725  continue;
726  } else if (count < min_count) {
727  s->bl_tree[curlen].Freq += count;
728  } else if (curlen != 0) {
729  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
730  s->bl_tree[REP_3_6].Freq++;
731  } else if (count <= 10) {
732  s->bl_tree[REPZ_3_10].Freq++;
733  } else {
734  s->bl_tree[REPZ_11_138].Freq++;
735  }
736  count = 0; prevlen = curlen;
737  if (nextlen == 0) {
738  max_count = 138, min_count = 3;
739  } else if (curlen == nextlen) {
740  max_count = 6, min_count = 3;
741  } else {
742  max_count = 7, min_count = 4;
743  }
744  }
745 }
746 
747 /* ===========================================================================
748  * Send a literal or distance tree in compressed form, using the codes in
749  * bl_tree.
750  */
751 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
752  int n; /* iterates over all tree elements */
753  int prevlen = -1; /* last emitted length */
754  int curlen; /* length of current code */
755  int nextlen = tree[0].Len; /* length of next code */
756  int count = 0; /* repeat count of the current code */
757  int max_count = 7; /* max repeat count */
758  int min_count = 4; /* min repeat count */
759 
760  /* tree[max_code + 1].Len = -1; */ /* guard already set */
761  if (nextlen == 0) max_count = 138, min_count = 3;
762 
763  for (n = 0; n <= max_code; n++) {
764  curlen = nextlen; nextlen = tree[n + 1].Len;
765  if (++count < max_count && curlen == nextlen) {
766  continue;
767  } else if (count < min_count) {
768  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769 
770  } else if (curlen != 0) {
771  if (curlen != prevlen) {
772  send_code(s, curlen, s->bl_tree); count--;
773  }
774  Assert(count >= 3 && count <= 6, " 3_6?");
775  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
776 
777  } else if (count <= 10) {
778  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
779 
780  } else {
781  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
782  }
783  count = 0; prevlen = curlen;
784  if (nextlen == 0) {
785  max_count = 138, min_count = 3;
786  } else if (curlen == nextlen) {
787  max_count = 6, min_count = 3;
788  } else {
789  max_count = 7, min_count = 4;
790  }
791  }
792 }
793 
794 /* ===========================================================================
795  * Construct the Huffman tree for the bit lengths and return the index in
796  * bl_order of the last bit length code to send.
797  */
799  int max_blindex; /* index of last bit length code of non zero freq */
800 
801  /* Determine the bit length frequencies for literal and distance trees */
802  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
803  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
804 
805  /* Build the bit length tree: */
806  build_tree(s, (tree_desc *)(&(s->bl_desc)));
807  /* opt_len now includes the length of the tree representations, except the
808  * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
809  */
810 
811  /* Determine the number of bit length codes to send. The pkzip format
812  * requires that at least 4 bit length codes be sent. (appnote.txt says
813  * 3 but the actual value used is 4.)
814  */
815  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
816  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
817  }
818  /* Update opt_len to include the bit length tree and counts */
819  s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
820  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
821  s->opt_len, s->static_len));
822 
823  return max_blindex;
824 }
825 
826 /* ===========================================================================
827  * Send the header for a block using dynamic Huffman trees: the counts, the
828  * lengths of the bit length codes, the literal tree and the distance tree.
829  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
830  */
831 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
832  int blcodes) {
833  int rank; /* index in bl_order */
834 
835  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
836  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
837  "too many codes");
838  Tracev((stderr, "\nbl counts: "));
839  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
840  send_bits(s, dcodes - 1, 5);
841  send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
842  for (rank = 0; rank < blcodes; rank++) {
843  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
844  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
845  }
846  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
847 
848  send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
849  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
850 
851  send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
852  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
853 }
854 
855 /* ===========================================================================
856  * Send a stored block
857  */
859  ulg stored_len, int last) {
860  send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
861  bi_windup(s); /* align on byte boundary */
862  put_short(s, (ush)stored_len);
863  put_short(s, (ush)~stored_len);
864  if (stored_len)
865  zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
866  s->pending += stored_len;
867 #ifdef ZLIB_DEBUG
868  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869  s->compressed_len += (stored_len + 4) << 3;
870  s->bits_sent += 2*16;
871  s->bits_sent += stored_len << 3;
872 #endif
873 }
874 
875 /* ===========================================================================
876  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
877  */
879  bi_flush(s);
880 }
881 
882 /* ===========================================================================
883  * Send one empty static block to give enough lookahead for inflate.
884  * This takes 10 bits, of which 7 may remain in the bit buffer.
885  */
887  send_bits(s, STATIC_TREES<<1, 3);
889 #ifdef ZLIB_DEBUG
890  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891 #endif
892  bi_flush(s);
893 }
894 
895 /* ===========================================================================
896  * Send the block data compressed using the given Huffman trees
897  */
899  const ct_data *dtree) {
900  unsigned dist; /* distance of matched string */
901  int lc; /* match length or unmatched char (if dist == 0) */
902  unsigned sx = 0; /* running index in symbol buffers */
903  unsigned code; /* the code to send */
904  int extra; /* number of extra bits to send */
905 
906  if (s->sym_next != 0) do {
907 #ifdef LIT_MEM
908  dist = s->d_buf[sx];
909  lc = s->l_buf[sx++];
910 #else
911  dist = s->sym_buf[sx++] & 0xff;
912  dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913  lc = s->sym_buf[sx++];
914 #endif
915  if (dist == 0) {
916  send_code(s, lc, ltree); /* send a literal byte */
917  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918  } else {
919  /* Here, lc is the match length - MIN_MATCH */
920  code = _length_code[lc];
921  send_code(s, code + LITERALS + 1, ltree); /* send length code */
922  extra = extra_lbits[code];
923  if (extra != 0) {
924  lc -= base_length[code];
925  send_bits(s, lc, extra); /* send the extra length bits */
926  }
927  dist--; /* dist is now the match distance - 1 */
928  code = d_code(dist);
929  Assert (code < D_CODES, "bad d_code");
930 
931  send_code(s, code, dtree); /* send the distance code */
932  extra = extra_dbits[code];
933  if (extra != 0) {
934  dist -= (unsigned)base_dist[code];
935  send_bits(s, dist, extra); /* send the extra distance bits */
936  }
937  } /* literal or match pair ? */
938 
939  /* Check for no overlay of pending_buf on needed symbols */
940 #ifdef LIT_MEM
941  Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942 #else
943  Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944 #endif
945 
946  } while (sx < s->sym_next);
947 
948  send_code(s, END_BLOCK, ltree);
949 }
950 
951 /* ===========================================================================
952  * Check if the data type is TEXT or BINARY, using the following algorithm:
953  * - TEXT if the two conditions below are satisfied:
954  * a) There are no non-portable control characters belonging to the
955  * "block list" (0..6, 14..25, 28..31).
956  * b) There is at least one printable character belonging to the
957  * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958  * - BINARY otherwise.
959  * - The following partially-portable control characters form a
960  * "gray list" that is ignored in this detection algorithm:
961  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962  * IN assertion: the fields Freq of dyn_ltree are set.
963  */
965  /* block_mask is the bit mask of block-listed bytes
966  * set bits 0..6, 14..25, and 28..31
967  * 0xf3ffc07f = binary 11110011111111111100000001111111
968  */
969  unsigned long block_mask = 0xf3ffc07fUL;
970  int n;
971 
972  /* Check for non-textual ("block-listed") bytes. */
973  for (n = 0; n <= 31; n++, block_mask >>= 1)
974  if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975  return Z_BINARY;
976 
977  /* Check for textual ("allow-listed") bytes. */
978  if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979  || s->dyn_ltree[13].Freq != 0)
980  return Z_TEXT;
981  for (n = 32; n < LITERALS; n++)
982  if (s->dyn_ltree[n].Freq != 0)
983  return Z_TEXT;
984 
985  /* There are no "block-listed" or "allow-listed" bytes:
986  * this stream either is empty or has tolerated ("gray-listed") bytes only.
987  */
988  return Z_BINARY;
989 }
990 
991 /* ===========================================================================
992  * Determine the best encoding for the current block: dynamic trees, static
993  * trees or store, and write out the encoded block.
994  */
996  ulg stored_len, int last) {
997  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
998  int max_blindex = 0; /* index of last bit length code of non zero freq */
999 
1000  /* Build the Huffman trees unless a stored block is forced */
1001  if (s->level > 0) {
1002 
1003  /* Check if the file is binary or text */
1004  if (s->strm->data_type == Z_UNKNOWN)
1005  s->strm->data_type = detect_data_type(s);
1006 
1007  /* Construct the literal and distance trees */
1008  build_tree(s, (tree_desc *)(&(s->l_desc)));
1009  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1010  s->static_len));
1011 
1012  build_tree(s, (tree_desc *)(&(s->d_desc)));
1013  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1014  s->static_len));
1015  /* At this point, opt_len and static_len are the total bit lengths of
1016  * the compressed block data, excluding the tree representations.
1017  */
1018 
1019  /* Build the bit length tree for the above two trees, and get the index
1020  * in bl_order of the last bit length code to send.
1021  */
1022  max_blindex = build_bl_tree(s);
1023 
1024  /* Determine the best encoding. Compute the block lengths in bytes. */
1025  opt_lenb = (s->opt_len + 3 + 7) >> 3;
1026  static_lenb = (s->static_len + 3 + 7) >> 3;
1027 
1028  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1029  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1030  s->sym_next / 3));
1031 
1032 #ifndef FORCE_STATIC
1033  if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034 #endif
1035  opt_lenb = static_lenb;
1036 
1037  } else {
1038  Assert(buf != (char*)0, "lost buf");
1039  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1040  }
1041 
1042 #ifdef FORCE_STORED
1043  if (buf != (char*)0) { /* force stored block */
1044 #else
1045  if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1046  /* 4: two words for the lengths */
1047 #endif
1048  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1049  * Otherwise we can't have processed more than WSIZE input bytes since
1050  * the last block flush, because compression would have been
1051  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1052  * transform a block into a stored block.
1053  */
1054  _tr_stored_block(s, buf, stored_len, last);
1055 
1056  } else if (static_lenb == opt_lenb) {
1057  send_bits(s, (STATIC_TREES<<1) + last, 3);
1058  compress_block(s, (const ct_data *)static_ltree,
1059  (const ct_data *)static_dtree);
1060 #ifdef ZLIB_DEBUG
1061  s->compressed_len += 3 + s->static_len;
1062 #endif
1063  } else {
1064  send_bits(s, (DYN_TREES<<1) + last, 3);
1065  send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1066  max_blindex + 1);
1067  compress_block(s, (const ct_data *)s->dyn_ltree,
1068  (const ct_data *)s->dyn_dtree);
1069 #ifdef ZLIB_DEBUG
1070  s->compressed_len += 3 + s->opt_len;
1071 #endif
1072  }
1073  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1074  /* The above check is made mod 2^32, for files larger than 512 MB
1075  * and uLong implemented on 32 bits.
1076  */
1077  init_block(s);
1078 
1079  if (last) {
1080  bi_windup(s);
1081 #ifdef ZLIB_DEBUG
1082  s->compressed_len += 7; /* align on byte boundary */
1083 #endif
1084  }
1085  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1086  s->compressed_len - 7*last));
1087 }
1088 
1089 /* ===========================================================================
1090  * Save the match info and tally the frequency counts. Return true if
1091  * the current block must be flushed.
1092  */
1093 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1094 #ifdef LIT_MEM
1095  s->d_buf[s->sym_next] = (ush)dist;
1096  s->l_buf[s->sym_next++] = (uch)lc;
1097 #else
1098  s->sym_buf[s->sym_next++] = (uch)dist;
1099  s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100  s->sym_buf[s->sym_next++] = (uch)lc;
1101 #endif
1102  if (dist == 0) {
1103  /* lc is the unmatched char */
1104  s->dyn_ltree[lc].Freq++;
1105  } else {
1106  s->matches++;
1107  /* Here, lc is the match length - MIN_MATCH */
1108  dist--; /* dist = match distance - 1 */
1109  Assert((ush)dist < (ush)MAX_DIST(s) &&
1110  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1111  (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1112 
1113  s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1114  s->dyn_dtree[d_code(dist)].Freq++;
1115  }
1116  return (s->sym_next == s->sym_end);
1117 }
local void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)
Definition: trees.c:898
local const int extra_dbits[D_CODES]
Definition: trees.c:66
ulg static_len
Definition: deflate.h:257
#define Tracecv(c, x)
Definition: zutil.h:236
local ct_data static_dtree[D_CODES]
Definition: trees.c:93
ush FAR ushf
Definition: zutil.h:42
const intf * extra_bits
Definition: trees.c:119
#define STORED_BLOCK
Definition: zutil.h:79
#define BL_CODES
Definition: deflate.h:46
int heap[2 *L_CODES+1]
Definition: deflate.h:213
unsigned char Byte
Definition: zconf.h:393
local TCONST static_tree_desc static_l_desc
Definition: trees.c:131
#define MIN_MATCH
Definition: zutil.h:84
uInt sym_end
Definition: deflate.h:254
local int detect_data_type(deflate_state *s)
Definition: trees.c:964
#define Z_UNKNOWN
Definition: zlib.h:206
void ZLIB_INTERNAL _tr_align(deflate_state *s)
Definition: trees.c:886
#define MAX_BITS
Definition: deflate.h:52
#define Assert(cond, msg)
Definition: zutil.h:231
#define END_BLOCK
Definition: trees.c:50
#define SMALLEST
Definition: trees.c:478
#define Tracev(x)
Definition: zutil.h:233
local int base_dist[D_CODES]
Definition: trees.c:110
local void pqdownheap(deflate_state *s, ct_data *tree, int k)
Definition: trees.c:507
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
Definition: trees.c:202
local void init_block(deflate_state *s)
Definition: trees.c:439
#define LENGTH_CODES
Definition: deflate.h:34
struct ct_data_s dyn_ltree[HEAP_SIZE]
Definition: deflate.h:202
#define REP_3_6
Definition: trees.c:53
#define ZLIB_INTERNAL
Definition: compress.c:8
ct_data * dyn_tree
Definition: deflate.h:91
local void tr_static_init(void)
Definition: trees.c:294
#define max_length
Definition: rsecc.c:47
#define Z_FIXED
Definition: zlib.h:199
local int base_length[LENGTH_CODES]
Definition: trees.c:107
Byte FAR Bytef
Definition: zconf.h:402
voidpf void * buf
Definition: ioapi.h:136
#define smaller(tree, n, m, depth)
Definition: trees.c:497
#define MAX_DIST(s)
Definition: deflate.h:295
#define REPZ_11_138
Definition: trees.c:59
#define put_short(s, w)
Definition: trees.c:144
local void gen_bitlen(deflate_state *s, tree_desc *desc)
Definition: trees.c:538
int max_code
Definition: deflate.h:92
local unsigned bi_reverse(unsigned code, int len)
Definition: trees.c:154
#define LITERALS
Definition: deflate.h:37
local TCONST static_tree_desc static_bl_desc
Definition: trees.c:137
local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
Definition: trees.c:831
#define Buf_size
Definition: deflate.h:55
#define DIST_CODE_LEN
Definition: trees.c:81
z_streamp strm
Definition: deflate.h:105
struct tree_desc_s bl_desc
Definition: deflate.h:208
struct tree_desc_s d_desc
Definition: deflate.h:207
#define TCONST
Definition: trees.c:128
#define Code
Definition: deflate.h:84
local TCONST static_tree_desc static_d_desc
Definition: trees.c:134
void ZLIB_INTERNAL _tr_init(deflate_state *s)
Definition: trees.c:455
const static_tree_desc * stat_desc
Definition: deflate.h:93
#define MAX_BL_BITS
Definition: trees.c:47
#define send_bits(s, value, length)
Definition: trees.c:273
unsigned short ush
Definition: zutil.h:41
#define MAX_MATCH
Definition: zutil.h:85
#define HEAP_SIZE
Definition: deflate.h:49
#define Len
Definition: deflate.h:86
#define put_byte(s, c)
Definition: deflate.h:287
#define local
Definition: unzip.c:91
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
Definition: trees.c:878
local const int extra_lbits[LENGTH_CODES]
Definition: trees.c:63
ush bl_count[MAX_BITS+1]
Definition: deflate.h:210
uchf * sym_buf
Definition: deflate.h:230
void ZLIB_INTERNAL zmemcpy(Bytef *dest, const Bytef *source, uInt len)
Definition: zutil.c:145
Bytef * pending_buf
Definition: deflate.h:107
local const uch bl_order[BL_CODES]
Definition: trees.c:72
uInt lit_bufsize
Definition: deflate.h:233
uch depth[2 *L_CODES+1]
Definition: deflate.h:220
#define Z_BINARY
Definition: zlib.h:203
local void send_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:751
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:858
#define pqremove(s, tree, top)
Definition: trees.c:486
Definition: inftrees.h:24
struct ct_data_s dyn_dtree[2 *D_CODES+1]
Definition: deflate.h:203
int FAR intf
Definition: zconf.h:405
uch _dist_code[DIST_CODE_LEN]
Definition: trees.c:98
struct tree_desc_s l_desc
Definition: deflate.h:206
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
Definition: trees.c:1093
local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:710
#define d_code(dist)
Definition: deflate.h:314
unsigned char uch
Definition: zutil.h:39
uch _length_code[MAX_MATCH-MIN_MATCH+1]
Definition: trees.c:104
unsigned long ulg
Definition: zutil.h:43
local void bi_windup(deflate_state *s)
Definition: trees.c:181
#define Freq
Definition: deflate.h:83
local void build_tree(deflate_state *s, tree_desc *desc)
Definition: trees.c:625
local int build_bl_tree(deflate_state *s)
Definition: trees.c:798
#define STATIC_TREES
Definition: zutil.h:80
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:995
uInt matches
Definition: deflate.h:258
const ct_data * static_tree
Definition: trees.c:118
local ct_data static_ltree[L_CODES+2]
Definition: trees.c:86
#define D_CODES
Definition: deflate.h:43
#define REPZ_3_10
Definition: trees.c:56
local const int extra_blbits[BL_CODES]
Definition: trees.c:69
uInt sym_next
Definition: deflate.h:253
struct ct_data_s bl_tree[2 *BL_CODES+1]
Definition: deflate.h:204
#define DYN_TREES
Definition: zutil.h:81
#define Z_TEXT
Definition: zlib.h:204
#define send_code(s, c, tree)
Definition: trees.c:238
local void bi_flush(deflate_state *s)
Definition: trees.c:166
char FAR charf
Definition: zconf.h:404
#define Tracevv(x)
Definition: zutil.h:234
#define L_CODES
Definition: deflate.h:40